285. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #15 with Dr. Ileana Pina

The following question refers to Section 10.1 of the 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

The question is asked by Western Michigan University medical student and CardioNerds Intern Shivani Reddy, answered first by Boston University cardiology fellow and CardioNerds Ambassador Dr. Alex Pipilas, and then by expert faculty Dr. Ileana Pina.

Dr. Pina is Professor of Medicine and Quality Officer for the Cardiovascular Line at Thomas Jefferson University, Clinical Professor at Central Michigan University, and Adjunct Professor of Biostats and Epidemiology at Case Western University. She serves as Senior Fellow and Medical Officer at the Food and Drug Administration’s Center for Devices and Radiological Health.

The Decipher the Guidelines: 2022 AHA / ACC / HFSA Guideline for The Management of Heart Failure series was developed by the CardioNerds and created in collaboration with the American Heart Association and the Heart Failure Society of America. It was created by 30 trainees spanning college through advanced fellowship under the leadership of CardioNerds Cofounders Dr. Amit Goyal and Dr. Dan Ambinder, with mentorship from Dr. Anu Lala, Dr. Robert Mentz, and Dr. Nancy Sweitzer. We thank Dr. Judy Bezanson and Dr. Elliott Antman for tremendous guidance.

Enjoy this Circulation 2022 Paths to Discovery article to learn about the CardioNerds story, mission, and values.

Mrs. Framingham is a 65-year-old woman who presents to her cardiologist’s office for stable angina and worsening dyspnea on minimal exertion. She has a history of non-insulin dependent type 2 diabetes mellitus and hypertension. She is taking metformin, linagliptin, lisinopril, and amlodipine. Blood pressure is 119/70 mmHg. Labs are notable for a hemoglobin of 14.2 mg/dL, iron of 18 mcg/dL, ferritin 150 ug/L, transferrin saturation 15%, and normal creatine kinase. An echocardiogram shows reduced left ventricular ejection fraction of 25%. Coronary angiography shows obstructive lesions involving the proximal left anterior descending, left circumflex, and right coronary arteries. In addition to optimizing GDMT, which of the following are recommendations for changes in management?


Anticoagulation, percutaneous revascularization, and IV iron


A change in her diabetic regimen, percutaneous revascularization, and PO iron


A change in her diabetic regimen, surgical revascularization, and IV iron


A change in her diabetic regimen, medical treatment alone for CAD, and PO iron


Anticoagulation and surgical revascularization


The correct answer is C – a change in her diabetic regimen, surgical treatment and IV iron.

Multimorbidity is common in patients with heart failure. More than 85% of patients with HF also have at least 2 additional chronic conditions, of which the most common are hypertension, ischemic heart disease, diabetes, anemia, chronic kidney disease, morbid obesity, frailty, and malnutrition. These conditions can markedly impact patients’ tolerance to GDMT and can inform prognosis.

Not only was Mrs. F found with HFrEF (most likely due to ischemic cardiomyopathy), but she also suffers from severe multi-vessel coronary artery disease, hypertension, and non-insulin dependent type 2 diabetes mellitus.

In addition to starting optimized GDMT for HF, specific comorbidities in the heart failure patient warrant specific treatment strategies. Mrs. Framingham would benefit from a change in her diabetic regimen, namely switching from linagliptin to an SGLT2 inhibitor (e.g., empagliflozin, dapagliflozin). In patients with HF and type 2 diabetes, the

use of SGLT2i is recommended for the management of hyperglycemia and to reduce HF related morbidity and mortality (Class 1, LOE A).

Furthermore, as she has diabetes, symptomatic severe multi-vessel CAD, and LVEF≤35%, surgical revascularization with coronary artery bypass grafting is warranted to improve symptoms, cardiovascular hospitalizations, and long-term all-cause mortality (Class 1, LOE B-R). Given the severity of her coronary disease, presence of diabetes mellitus, and coronary anatomy suitable for bypass, percutaneous (i.e., PCI) or medical treatment alone are inappropriate (options B, D).


Although she does not have anemia, she may benefit from IV iron. IV iron supplementation has been shown in the FAIR-HF, IRONOUT HF, and AFFIRM-AHF trials to significantly improve NYHA functional class, 6-minute walk test, quality of life, and decrease hospitalizations for HF, independently of anemia. These effects were not seen with iron given orally (options B, D). Iron deficiency is usually defined as ferritin level <100 μg /L or 100 to 300 μg/L, if the transferrin saturation is <20%.  Therefore, in patients with HFrEF and iron deficiency with or without anemia, intravenous iron replacement is reasonable to improve functional status and QOL (Class 2a, LOE B-R).


Although HF is a pro-thrombotic state, anticoagulation is not warranted empirically in Mrs. F, who has no evidence of thrombus or high-risk features suggesting impending thrombus (options A, E).

Main Takeaway

In summary, multimorbidity is frequent in heart failure patients and treatment targeted to specific morbidities is warranted. In patients with heart failure and diabetes, an SGLT2 inhibitor should be part of the medication regimen. Intravenous iron supplementation should be considered in iron-deficient patients independent of anemia. In patients with heart failure with LVEF≤35% and severe coronary artery disease with suitable anatomy, coronary artery bypass grafting is recommended. 

Guideline Loc.

Section 10.1, Figure 14

285. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #15 with Dr. Ileana Pina
You are currently viewing 285. Guidelines: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure – Question #15 with Dr. Ileana Pina